Uniaxial extending neural probes for bleeding-absent implantation
We observed the ensured upright insertion of the probe into the brain while avoiding angiorrhexis with a two-photon microscope and a high-speed camera. The probes permit electrophysiological studies with minimal foreign body responses and imageological compatibility, underscoring their clinical potential.
Dual circuits originating from the ventral hippocampus independently facilitate affective empathy
Miniaturized two-photon technology helps the research group of Southeast University reveal the neural mechanism of emotional empathy
To date, studies of the neural basis of fear have mostly focused on the amygdala. Here we identify a molecularly defined amygdala-independent tetra-synaptic pathway for olfaction-evoked innate fear and anxiety in male mice.
Tet2 acts in the lateral habenula to regulate social preference in mice
The lateral habenula (LHb) has been considered a moderator of social behaviors. However, it remains unknown how LHb regulates social interaction. Here, we show that the hydroxymethylase Tet2 is highly expressed in the LHb. Tet2 conditional knockout (cKO) mice exhibit impaired social preference; however, replenishing Tet2 in the LHb rescues social preference impairment in Tet2 cKO mice. Tet2 cKO alters DNA hydroxymethylation (5hmC) modifications in genes that are related to neuronal functions, as is confirmed by miniature two-photon microscopy data. Further, Tet2 knockdown in the glutamatergic neurons of LHb causes impaired social behaviors, but the inhibition of glutamatergic excitability restores social preference. Mechanistically, we identify that Tet2 deficiency reduces 5hmC modifications on the Sh3rf2 promoter and Sh3rf2 mRNA expression. Interestingly, Sh3rf2 overexpression in the LHb rescues social preference in Tet2 cKO mice. Therefore, Tet2 in the LHb may be a potential therapeutic target for social behavior deficit-related disorders such as autism.
Persistence in the face of failure helps to overcome challenges. But the ability to adjust behavior or even give up when the task is uncontrollable has advantages. How the mammalian brain switches behavior when facing uncontrollability remains an open question. We generated two mouse models of behavioral transition from action to no-action during exposure to a prolonged experience with an uncontrollable outcome. The transition was not caused by pain desensitization or muscle fatigue and was not a depression-/learned-helplessness-like behavior. Noradrenergic neurons projecting to GABAergic neurons within the orbitofrontal cortex (OFC) are key regulators of this behavior. Fiber photometry, microdialysis, mini-two-photon microscopy, and tetrode/optrode in vivo recording in freely behaving mice revealed that the reduction of norepinephrine and downregulation of alpha 1 receptor in the OFC reduced the number and activity of GABAergic neurons necessary for driving action behavior resulting in behavioral transition. These findings define a circuit governing behavioral switch in response to prolonged uncontrollability.
It is generally thought that under basal conditions, neurons produce ATP mainly through mitochondrial oxidative phosphorylation (OXPHOS), and glycolytic activity only predominates when neurons are activated and need to meet higher energy demands. However, it remains unknown whether there are differences in glucose metabolism between neuronal somata and axon terminals. Here, we demonstrated that neuronal somata perform higher levels of aerobic glycolysis and lower levels of OXPHOS than terminals, both during basal and activated states. We found that the glycolytic enzyme pyruvate kinase 2 (PKM2) is localized predominantly in the somata rather than in the terminals. Deletion of Pkm2 in mice results in a switch from aerobic glycolysis to OXPHOS in neuronal somata, leading to oxidative damage and progressive loss of dopaminergic neurons. Our findings update the conventional view that neurons uniformly use OXPHOS under basal conditions and highlight the important role of somatic aerobic glycolysis in maintaining antioxidant capacity.