In situ multimodal transparent electrophysiological hydrogel for in vivo miniature two-photon neuroimaging and electrocorticogram analysis

Hydrogels are widely used in nerve tissue repair and show good histocompatibility. There remain, how- ever, challenges with hydrogels for applications related to neural signal recording, which requires a tissue- like biomechanical property, high optical transmission, and low impedance. Here, we describe a transparent hydrogel that is highly biocompatible and has a low Young’s modulus (0.15 MPa). Additionally, it functions well as an implantable electrode, as it conformably adheres to brain tissue, results in mini- mal inflammation and has a low impedance of 150 Ω at 1 kHz. Its high transmittance, corresponding to 93.35% at a wavelength of 300 nm to 1100 nm, supports its application in two-photon imaging. Consistent with these properties, this flexible multimodal transparent electrophysiological hydrogel (MTEHy) electrode was able to record neuronal Ca2+ activity using miniature two-photon microscopy. It also used to monitor electrocorticogram (ECoG) activity in real time in freely moving mice. Moreover, its compatibility with magnetic resonance imaging (MRI), indicates that MTEHy is a new tool for studying activity in the cerebral cortex.

A nociceptive neuronal ensemble in the dorsomedial prefrontal cortex underlies pain chronicity

Pain chronicity involves unpleasant experience in both somatosensory and affective aspects, accompanied with the prefrontal cortex (PFC) neuroplastic alterations. However, whether specific PFC neuronal ensembles underlie pain chronicity remains elusive. Here we identify a nociceptive neuronal ensemble in the dorsomedial prefrontal cortex (dmPFC), which shows prominent reactivity to nociceptive stimuli. We observed that this ensemble shows distinct molecular characteristics and is densely connected to pain-related regions including basolateral amygdala (BLA) and lateral parabrachial nuclei (LPB). Prolonged chemogenetic activation of this nociceptive neuronal ensemble, but not a randomly transfected subset of dmPFC neurons, induces chronic pain-like behaviors in normal mice. By contrast, silencing the nociceptive dmPFC neurons relieves both pain hypersensitivity and anxiety in mice with chronic inflammatory pain. These results suggest the presence of specific dmPFC neuronal ensembles in processing nociceptive information and regulating pain chronicity.

Encoding of social novelty by sparse GABAergic neural ensembles in the prelimbic cortex

Although the prelimbic (PrL) area is associated with social behaviors, the neural ensembles that regulate social preference toward novelty or familiarity remain unknown. Using miniature two-photon microscopy (mTPM) to visualize social behavior–associated neuronal activity within the PrL in freely behaving mice, we found that the Ca2+ transients of GABAergic neurons were more highly correlated with social behaviors than those of glutamatergic neurons. Chemogenetic suppression of social behavior–activated GABAergic neurons in the PrL disrupts social novelty behaviors. Restoring the MeCP2 level in PrL GABAergic neurons in MECP2 transgenic (MECP2-TG) mice rescues the social novelty deficits. Moreover, we identified and characterized sparsely distributed NewPNs and OldPNs of GABAergic interneurons in the PrL preferentially responsible for new and old mouse exploration, respectively. Together, we propose that social novelty information may be encoded by the responses of NewPNs and OldPNs in the PrL area, possibly via synergistic actions on both sides of the seesaw.

Itch perception is reflected by neuronal ignition in the primary somatosensory cortex

Multiple cortical areas including the primary somatosensory cortex (S1) are activated during itch signal processing, yet cortical representation of itch perception remains unknown. Using novel miniature two-photon microscopic imaging in free-moving mice, we investigated the coding of itch perception in S1. We found that pharmacological inactivation of S1 abolished itch-induced scratching behavior, and the itch-induced scratching behavior could be well predicted by the activity of a fraction of layer 2/3 pyramidal neurons, suggesting that a subpopulation of S1 pyramidal neurons encoded itch perception, as indicated by immediate subsequent scratching behaviors. With a newly established optogenetics-based paradigm that allows precisely controlled pruritic stimulation, we found that a small fraction of S1 neurons exhibited an ignition-like pattern at the detection threshold of itch perception. Our study revealed the neural mechanism underlying itch perceptual coding in S1, thus paving the way for the study of cortical representation of itch perception at the single-neuron level in freely moving animals.

Visualizing Seizure Propagation in Freely-moving Mice via Miniature Two-photon Microscopy

The results reported in this study provide a viable approach for visualizing brain network hyper-excitation coupled with behavioral assessment in freely moving mice. This could potentially accelerate advancements in seizure and neuroscience research. The FHIRM-TPM, a fast high-resolution miniaturized two-photon microscope platform, is multi-modally leveraged to illustrate the initiation and propagation of seizures in freely-moving mice with seizures induced by kainic acid injection, in conjunction with electroencephalography (EEG) recording and behavioral assessments.

Dynamics of a disinhibitory prefrontalmicrocircuit in controlling social competition

Social competition plays a pivotal role in determining individuals’ social status. While the dorsomedial pre-frontal cortex (dmPFC) is essential in regulating social competition, it remains unclear how information is processed within its local networks. Here, by applying optogenetic and chemogenetic manipulations in a dominance tube test, we reveal that, in accordance with pyramidal (PYR) neuron activation, excitation of the vasoactive intestinal polypeptide (VIP) or inhibition of the parvalbumin (PV) interneurons induces winning. The winning behavior is associated with sequential calcium activities initiated by VIP and followed by PYR and PV neurons. Using miniature two-photon microscopic (MTPM) and optrode recordings in awake mice, we show that VIP stimulation directly leads to a two-phased activity pattern of both PYR and PV neurons—rapid suppression followed by activation. The delayed activation of PV implies an embedded feedback tuning. This disinhibitory VIP-PV-PYR motif forms the core of a dmPFC microcircuit to control social competition.

< 1 >